
Unit 5 – WS04 Banking Objects

The goal of this assignment is to expand the banking

classes discussed in a classroom to implement the

following inheritance hierarchy:

Problem #1 – Create the two classes (Account and

Savings) that were discussed in a classroom. The code

for these classes is on page 2 of this worksheet.

Problem #2 – Create the accountMain class and code

the accountMain class to test all aspects of the Account

class and the Savings class.

Problem #3 – Add one more class called Checking that

has an instance variable balance that tracks the balance

of checking accounts. It should initialize the balance

variable to zero when a checking account is created.

Problem #4 – Edit the Checking class so that it also

contains an ArrayList called checks. When a checking

account is created, the initial value of the checks

ArrayList should be set to 0.0 (index 0 = 0.0). This

means that every check thereafter will correspond to

the index number if the checks are entered in order.

Problem #5 – Give the Checking class a mutator method

called deposit() that takes in a deposit amount as a

parameter and adds the amount to the balance.

Problem #6 – Give the Checking class a mutator method

called withdraw() that takes in a withdraw amount and

subtracts the amount from the account balance.

Problem #7 – Add another mutator method called

earnInterest() that gives the account balance 0.1%

interest when called.

Name __

Problem #8 – Add another mutator method called

enterAccountInfo() that has four parameters. An

integer account number, a String for the account

password, a String for the username, and a double for

the initial balance in the account. This method should

store all of these passed parameter values into a

checking account object.

Problem #9 – Create an accessor method called

getAccountNumber() that overrides the Account class

getAccountNumber() method (this presents and

example of polymorphism). Checking account numbers

should be 9 digits and always start with 888.

Problem #10 – Create a mutator method name

writeCheck(). This method should take in a double

parameter that represents the amount the check was

written for. The writeCheck() method should then add

the check amount to the checks ArrayList and subtract

the check amount from the account balance.

Problem #11 – Create one last accessor method named

checkLookUp(). This method should be passed an

integer check number so that it can look up the check

amount by finding the index number that corresponds

to the check number. The method should return how

much the check was written for.

Problem #12 – Edit your accountMain class to include

code that tests and verifies all aspects of all classes.

Your accountMain class should show that all classes and

all method are working correctly … like you almost have

a working bank!

Savings

Account

Checking

public class Account {

 int number;

 String name;

 String password;

 public Account(){

 number=0;

 name=" ";

 password="XYZ123";

 }

 public void enterAccountInfo(int num, String nm, String pw){

 this.number = num;

 this.name=nm;

 this.password=pw;

 }

 public int getAccountNumber(){

 return this.number;

 }

 public String getPassword(){

 return this.password;

 }

 public void changePassword(){

 Scanner getPW = new Scanner(System.in);

 System.out.println("Enter your new password: ");

 String newPW = getPW.next();

 System.out.println("Re-enter your new password: ");

 String verifyPW = getPW.next();

 if(newPW.equals(verifyPW))

 this.password=newPW;

 else

 System.out.println("Sorry, no password change!");

 }

 public String getName(){

 return this.name;

 }

}

public class Savings extends Account{

 double balance;

 public Savings(){

 balance=0;

 }

 public void deposit(double dep){

 this.balance+=dep;

 }

 public void withdraw(double wd){

 this.balance-=wd;

 }

 //no override needed, this is method overloading- diff parameters!

 public void enterAccountInfo(int num, String nm, String pw, double

bal){

 this.number=num;

 this.name=nm;

 this.password=pw;

 this.balance=bal;

 }

 public void earnInterest(){

 this.balance=(this.balance*1.005);

 }

 @Override //this is override, replaces!

 public int getAccountNumber(){

 return this.number+888000000; //start w/888 & 9 digits

 }

}

